Zero-shot Learning via Shared-Reconstruction-Graph Pursuit
نویسندگان
چکیده
Zero-shot learning (ZSL) aims to recognize objects from novel unseen classes without any training data. Recently, structuretransfer based methods are proposed to implement ZSL by transferring structural knowledge from the semantic embedding space to image feature space to classify testing images. However, we observe that such a knowledge transfer framework may suffer from the problem of the geometric inconsistency between the data in the training and testing spaces. We call this problem as the space shift problem. In this paper, we propose a novel graph based method to alleviate this space shift problem. Specifically, a Shared Reconstruction Graph (SRG) is pursued to capture the common structure of data in the two spaces. With the learned SRG, each unseen class prototype (cluster center) in the image feature space can be synthesized by the linear combination of other class prototypes, so that testing instances can be classified based on the distance to these synthesized prototypes. The SRG bridges the image feature space and semantic embedding space. By applying spectral clustering on the learned SRG, many meaningful clusters can be discovered, which interprets ZSL performance on the datasets. Our method can be easily extended to the generalized zero-shot learning setting. Experiments on three popular datasets show that our method outperforms other methods on all datasets. Even with a small number of training samples, our method can achieve the state-of-the-art performance.
منابع مشابه
LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning
Conventional zero-shot learning (ZSL) methods recognise an unseen instance by projecting its visual features to a semantic space that is shared by both seen and unseen categories. However, we observe that such a one-way paradigm suffers from the visualsemantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot explicitly correspond to visual patterns, and vice versa. Such...
متن کاملTransductive Zero-Shot Hashing via Coarse-to-Fine Similarity Mining
Zero-shot Hashing (ZSH) is to learn hashing models for novel/target classes without training data, which is an important and challenging problem. Most existing ZSH approaches exploit transfer learning via an intermediate shared semantic representations between the seen/source classes and novel/target classes. However, due to having disjoint, the hash functions learned from the source dataset ar...
متن کاملTransductive Zero-Shot Recognition via Shared Model Space Learning
Zero-shot Recognition (ZSR) is to learn recognition models for novel classes without labeled data. It is a challenging task and has drawn considerable attention in recent years. The basic idea is to transfer knowledge from seen classes via the shared attributes. This paper focus on the transductive ZSR, i.e., we have unlabeled data for novel classes. Instead of learning models for seen and nove...
متن کاملZero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. ...
متن کاملZero-Shot Learning with Generative Latent Prototype Model
Zero-shot learning, which studies the problem of object classification for categories for which we have no training examples, is gaining increasing attention from community. Most existing ZSL methods exploit deterministic transfer learning via an in-between semantic embedding space. In this paper, we try to attack this problem from a generative probabilistic modelling perspective. We assume for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.07302 شماره
صفحات -
تاریخ انتشار 2017